
Ask any software engineer about the best way to do something
and they’ll likely tell you “it depends.” Every project and team
works differently and has specific concerns, requirements and
opinions, adding complexity on top of the technical and operational
complexity of software development. The challenge lies in
managing the work and emergent complexity while staying abreast
of industry best practices in a way that fits our teams’ particular
processes and environment.

First, let’s review a few general best practices that can be tailored
to fit a team’s specific needs. Then, we’ll get into some details about
exactly how to implement them using Mattermost as a central hub
for collaborative workflows. You’ll learn how messaging, structured
process execution, and task management come together in a way
that unites teams and tools across an organization. The result will
be less context switching, fewer manual tasks, and more freedom to
ship stable software faster.

Best Practices for
Software Development
WITH MATTERMOST

https://docs.mattermost.com/about/product.html#collaboration-workflows-addressed-by-mattermost
https://mattermost.com/

2Best Practices for Software Development with Mattermost

Common Best Practices
When it comes down to it, a lot of best practices are centered around the same principles.

Teams need to agree on how work will happen, document that process, use it, and improve

on it. That means you need to:

Communicate
clearly and

constructively

Have a single
source of truth

Follow the agreed
on process without

barriers

Easily update and
share resources

All of these best practices are based on open communication, visibility, and teamwork. Mak-

ing tools, documentation, and processes publicly available to everyone on the team removes

barriers to creativity and fosters alignment. By eliminating hurdles like context switching,

siloed information, and poorly-defined processes, a team can more easily get through the

day-to-day work and make room for transformation and innovation.

Your goals as a team may include following specific practices like DevOps, GitOps or Ag-

ile, or emphasize automation, transparency, and repeatability. To achieve those goals,

you’ll need systems that support changes to both technical practices and team culture.

We recommend starting simple, especially if you have a small team, focusing on getting

the process right before adding exciting new software into the mix, and following a similar

process to our Seven Steps to ChatOps Guide. Look for common tasks where a 5% improve-

ment would have exponential benefit over time, such as tasks that are easy to automate,

and meetings that can be asynchronous. When you understand what your team needs, then

spend the time matching those requirements to software and learning how to use it.

For some inspiration, check out this blog post on how we use the Mattermost platform to

support best practices at our company.

https://mattermost.com/chatops-guide/
https://mattermost.com/blog/use-mattermost-to-build-mattermost

3Best Practices for Software Development with Mattermost

Keep it agile and visible

Success is built around trust and open communication. When team members can com-

municate comfortably and consistently they’re more likely to be highly engaged. Globally

dispersed teams and the rise of remote work are nearly universal challenges. By putting in-

formation in digital spaces where the entire team can access it when and how they need to,

everyone can stay on the same page and also help their colleagues self-serve information.

Developer knowledge can be shared to the entire organization and junior team members can

quickly reference team resources or search for past work to understand the team norms.

Asynchronous communication across these teams is made possible by robust chat plat-

forms with features like threads, markdown formatting, automatic code syntax highlighting,

and other dynamic content. All these features add up to a workspace where communication

is nuanced, clear, and always with context - available not only in the immediate course of

the conversation but in the backscroll for future reference.

A collaboration tool such as Mattermost Channels can be used to communicate fast feed-

back during the lifecycle of a project so that changes can be incorporated as soon as possi-

ble. Small chunks of work, reviewed frequently, can lead to a much more solid final product

and less rework in the long term. Team channels include descriptions and pinned items

where a team can store frequently referenced resources and links. Open and async commu-

nications in channels help establish team norms and culture when senior members lead by

example where everyone can see.

Use version control and project tracking

Version control systems are a critical software development best practice. Git is the de facto

standard for tracking and managing code changes especially for a distributed team. The

key here is that changes are tracked in small increments, and changes can be rolled back

to a previous version if something goes wrong. Many developers can be working safely and

simultaneously, and anyone can look into the project history to clearly view what happened.

https://www.techrepublic.com/article/ceos-need-to-shift-from-tools-first-to-teams-first-thinking-to-improve-collaboration/
https://www.techrepublic.com/article/ceos-need-to-shift-from-tools-first-to-teams-first-thinking-to-improve-collaboration/
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows#ch05-distributed-git

4Best Practices for Software Development with Mattermost

As a developer working with a project stored on say, GitHub, you may get a lot of notifica-

tions from GitHub for comments on issues, code review requests, pull requests, and more.

Whether those notifications appear in a web browser, via email, or somewhere else, it’s one

more place you need to check for messages. Mattermost offers a direct integration with

GitHub (and GitLab) so that your notifications appear directly in the Mattermost App, along-

side your conversations in Channels. You can also interact with your GitHub account using

slash commands for the integrated bot to subscribe a channel to a GitHub feed and more,

so that everyone in the channel stays up to date.

Mattermost also has an integration with Jira, which works similarly. Try running /̀jira help̀

in a conversation with yourself on Mattermost. Without leaving the team conversation in a

channel, you can quickly spin up a new issue stub to track a request or bug. Any message

can also be used to create or add to a GitHub issue or Jira ticket by clicking the message

actions menu, then `creatè or `attach tò . Team members can shut off notifications from ev-

erything but Mattermost and stay focused while still receiving those critical review requests

that keep work moving forward.

https://github.com/mattermost/mattermost-plugin-github#slash-commands
https://github.com/mattermost/mattermost-plugin-github#slash-commands
https://github.com/mattermost/mattermost-plugin-jira
https://mattermost.com/blog/tackling-developer-productivity-challenges-with-mattermost/

5Best Practices for Software Development with Mattermost

With project tracking, the important thing is that work and the team’s time is counted,

credited, and visible to everyone. It’s another way we can eliminate silos and keep the entire

organization on the same page.

Get the bird’s-eye view of what you can do with various integrations and open source magic

for Mattermost.

Use documented, repeatable, and shared processes

Mattermost CEO Ian Tien recently wrote about how DevOps lost its way -- and how to bring

it back, talking about the need for visibility and centralized, simplified interfaces. For ex-

ample, DevOps best practices often rely on checklists. A team starting from scratch might

run through a process, write down what they did, run it again, update the documentation,

then continue to use that same process and iterate. That team will need to provide updates

and visibility into the process when it’s underway and afterwards in reports, and the check-

list needs to be accessible and easy to update as the team learns and improves over time.

Unfortunately, teams often rely on text documents, spreadsheets, wikis, and other tools that

are both siloed and difficult to maintain.

https://mattermost.com/integrations-overview/
https://mattermost.com/integrations-overview/
https://gcn.com/articles/2021/10/22/devops-tool-hub.aspx
https://gcn.com/articles/2021/10/22/devops-tool-hub.aspx
https://mattermost.com/blog/tackling-developer-productivity-challenges-with-mattermost/

6Best Practices for Software Development with Mattermost

Mattermost Playbooks are templated, collaborative checklists with built-in automation

and integration with third-party tools that a team can follow over and over. Every step and

required action of a process is documented and prescribed by the playbook for consistency

and repeatability. A `ruǹ of a Playbook includes a checklist with task assignments, depen-

dencies, notifications, and integrated automations, as well as an associated Mattermost

channel. Once the run has finished, Playbooks offers integrated retrospectives, reports and

a timeline of everything that happened.

Playbooks support transparency within and between teams because stakeholders can

observe the channel conversation side-by-side with the checklist while the run is in prog-

ress, or review the timeline and retrospective afterwards. They also support short feedback

cycles, continuous improvement, and visibility of work, all components of DevOps best prac-

tices. For example, our fictional company “Acme Co” uses Playbooks for incident response.

Possibly the most important feature of a good checklist is that it enables and supports any

team member using it. Imagine your on-call engineer receiving a page at 3 a.m. local time

and needing to perform all the necessary steps to head off an outage, alert others, start

troubleshooting, and make sure everything they do is tracked. That’s a lot to ask of someone

who was asleep five minutes ago. A Playbook is there to enable that engineer for success, as

well as providing a clear timeline and picture of what happened so far when the next mem-

ber of the response team joins.

In summary, Playbooks make life easier for everyone from release managers to on-call SREs

by documenting and enforcing the use of an agreed-on process:

 1. Use it for incident response

 2. Use it for software releases

 3. Use it for testing and QA procedures

 4. Finally, use it to inform retrospectives and postmortems, which are important be-

cause that’s where teammates can feel safe in sharing their opinions and experiences.

Everyone is invited to contribute in an open format that encourages honest feedback

and constructive suggestions for improvement. Those suggestions can then be worked

back into the playbook to continuously improve the process and the team. Kaizen!

https://mattermost.com/blog/repeatable-incident-resolution-workflows/

7Best Practices for Software Development with Mattermost

Integrate CI/CD pipelines

Continuous integration and continuous delivery (CI/CD) are considered best practices be-

cause releasing small pieces of work regularly reduces firefighting and increases value for

the end user. Automations like build processes greatly reduce the risk of introducing errors

during deployment, support security best practices, and help the entire team stay on track

throughout the build and release process. However, working with additional systems adds

to the volume of tools a team needs to manage and monitor and leads to increased context

switching and decreased productive time.

Here are three ways to integrate your CI/CD pipelines so that you don’t need to leave Matter-

most to trigger, monitor, and interact with workflows:

 1. CircleCI - Connect your builds directly into Mattermost, then use integrat-

ed commands to monitor pipelines and trigger workflows. Receive notifi-

cations from CircleCI in Mattermost channels, and interact with the plugin

using /̀circleci` slash commands.

 2. Jenkins - Similar to the CircleCI plugin, the Jenkins plugin allows you to

subscribe to build notifications in Mattermost Channels, start jobs, get

logs, restart servers, and lots more. You may also want the Jenkins post-

build action plugin to send webhook notifications.

 3. GitLab CI/CD - Include notifications about your GitLab pipelines using

the Mattermost GitLab plugin to subscribe. This plugin includes a host of

GitLab integration features for two-way communication with Mattermost.

Run /̀gitlab help̀ in Mattermost for more details.

 4. Find more CI/CD plugins for Mattermost in the Marketplace

https://docs.mattermost.com/messaging/extending-channels-with-integrations.html#ci-cd-integrations
https://mattermost.com/blog/ci-cd-pipeline-security/
https://mattermost.com/marketplace/circleci/
https://github.com/mattermost/mattermost-plugin-jenkins/blob/master/README.md
https://github.com/jenkinsci/mattermost-plugin
https://github.com/jenkinsci/mattermost-plugin
https://mattermost.gitbook.io/plugin-gitlab/feature-summary
https://mattermost.com/marketplace-category/ci-cd-config-mgmt/

8Best Practices for Software Development with Mattermost

Implement Your Best Practices With
Mattermost
Following best practices doesn’t need to be complicated. The keys are to enable as many

people as possible and encourage broad participation to increase the visibility of the excel-

lent work your team is capable of. To do so, remember to:

Communicate
clearly and

constructively

Have a single
source of truth

Follow the agreed
on process without

barriers

Update and share
resources

To learn more about how Mattermost works as a central operational hub for technical

teams, try Mattermost today and reach out on the community server to continue the

conversation!

https://mattermost.com/download/
https://docs.mattermost.com/guides/community-chat.html

Mattermost.com

9

https://mattermost.com/
https://mattermost.com/

